Resources for Dividing Terms
-
Video Tutorials
1
Click Here
Dividing Terms Theory
![When dividing terms the number are first divided or simplified as fractions and the like terms are grouped together and if there are more than one like term then the powers are subtracted.\\ For example \( \begin{aligned}[t] 9 x^3 \div 3 x&=(9 \div 3) \times x^3 \div x^1\\ & =3 \times x^{3-1} \\ & =3 x^2 \end{aligned}\) \begin{multicols}{2} \textbf{Example 1}\\ Simplify \(8 x^2 y \div 4 x\)\\ \textbf{Example 1 solution}\\ \(\begin{aligned} 8 x^2 y \div 4 x & =(8 \div 4) \times\left(x^2 \div x\right) \times y \\ & =2 x^{2-1} \times y \\ & =2 x y \end{aligned}\) \columnbreak \textbf{Example 2}\\ Simplify \(\dfrac{15 y x^2}{3 x y}\)\\ \textbf{Example 2 solution}\\ \(\begin{aligned} \frac{15 y x^2}{3 x y} & =(15 \div 3) \times \frac{x^2 y}{x y} \\ & =5 x^{2-1} \times \frac{\cancel{y}}{\cancel{y}} \\ & =5 x \end{aligned}\) \end{multicols}](/media/dlajdmf2/6886.png)
1
Videos relating to Dividing Terms.
With all subscriptions, you will receive the below benefits and unlock all answers and fully worked solutions.