Resources for Applications
-
Questions
4
With Worked SolutionClick Here -
Video Tutorials
4
Click Here
Applications Theory
![Applications - Integration methods can be applied to finding particular solutions to differential equations, determine areas of regions bounded by curves and volumes of solids when parts of curves are rotated about \(x\) or \(y\) axes.\\ \begin{multicols}{2} \textbf{Example 1}\\ %35340 Find the particular solution of \(\dfrac{{dy}}{{dx}} = {e^{ - x}}\cos x\) given that \(y=\dfrac{1}{2}\) when \(x=0\) \\ \textbf{Example 1 solution}\\ $\begin{aligned} &\frac{d y}{d x}=e^{-x} \cos x \\&\therefore y=\int e^{-x} \cos x d x \\&\int u d v=u v-\int v d u \\&u=e^{-x} \quad d v=\cos x \\&d u=-e^{-x} \quad v=\sin x \\&y=e^{-x} \sin x+\int e^{-x} \sin x d x \\ \text{Let }I&=\int e^{-x} \sin x d x \\&u=e^{-x} \quad\quad\quad d v=\sin x \\&d u=-e^{-x} \quad\quad v =-\cos x \\&I=-e^{-x} \cos x-\int e^{-x} \cos x d x \end{aligned}$\\ $\begin{aligned}I&=-e^{-x} \cos x-y \\y&=e^{-x} \sin x+I \\&=e^{-x} \sin x-e^{-x} \cos x-y \\2 y&=e^{-x}(\sin x-\cos x) \\y&=\frac{e^{-x}}{2}(\sin x-\cos x)+c \\&\text { when } x=0, y=\frac{1}{2} \end{aligned}$\\ $\begin{aligned} \qquad\frac{1}{2} &=\frac{1}{2}(0-1)+c \rightarrow \therefore c=1 \\\therefore y &=\frac{e^{-x}}{2}(\sin x-\cos )+1\end{aligned}$\\ \columnbreak \textbf{Example 2}\\ %35341 Find the area of the region bounded by the curve \(y=\sin ^{-1}x\), the \(x\)-axis and the lines \(x=\dfrac{-1}{2}\) and \(x=\dfrac{1}{2}\) \\ \textbf{Example 2 solution}\\ $\begin{aligned} &y=\sin ^{-1} x \text { is an odd function } \\&\therefore \quad \text { Area }=2 \int_{0}^{\frac{1}{2}} \sin ^{-1} x d x \\&\int u d v=u v-\int v d u \\&\quad u=\sin ^{-1} x\qquad d v=1 \\&\quad du=\frac{1}{\sqrt{1-x^{2}}} \quad v=x \end{aligned}$\\ $\begin{aligned}\text { Area }=& 2 \times \frac{\pi}{12}-2 \int_{0}^{\frac{1}{2}} x\left(1-x^{2}\right)^{-\frac{1}{2}} d x \\=& \frac{\pi}{6}+\int_{0}^{\frac{1}{2}}-2 x\left(1-x^{2}\right)^{-\frac{1}{2}} d x \\=& \frac{\pi}{6}+2\left[\sqrt{1-x^{2}}\right]_{0}^{\frac{1}{2}} \\=& \frac{\pi}{6}+\sqrt{3}-2\end{aligned}$\\ \end{multicols}](/media/jkxhdnsq/applications.png)
4
With Worked Solution4
Videos relating to Applications.
With all subscriptions, you will receive the below benefits and unlock all answers and fully worked solutions.
Purchase the course book. This book either comes as a physical book or it can be purchased as an e-book.
You may choose to purchase the individual topic book from the main coursebook. These only come as e-books.