Resources for Vectors in Geometry
-
Questions
5
With Worked SolutionClick Here -
Video Tutorials
2
Click Here
Vectors in Geometry Theory
![Many geometry theorems can be solved using vector methods.\\ \textbf{Example}\\ \begin{center} \resizebox{0.25\textwidth}{!}{ \begin{tikzpicture} \coordinate [label=above:$A$ ] (A) at (-2,4); \coordinate [ label=below:$B$ ] (B) at (2,0); \coordinate [ label=below:$C$ ] (C) at (-2,0); \draw[fill=black] (-2,2) node[left=1mm]{$\underset{\sim}b$}; \draw[fill=black] (0,0) node[below=1mm]{$\underset{\sim}a$}; \draw[fill=black] (0,2) node[right=1mm,yshift=1mm]{$\underset{\sim}c$}; \draw[line width=1pt] (A)--(B)--(C)--cycle; \draw[decoration={markings, mark=at position 0.7 with {\arrow[scale=1.3]>}}, postaction=decorate,line width=1pt](A)--(B); \draw[decoration={markings, mark=at position 0.4 with {\arrow[scale=1.3]<}}, postaction=decorate,line width=1pt](B)--(C); \draw[decoration={markings, mark=at position 0.3 with {\arrow[scale=1.3]<}}, postaction=decorate,line width=1pt](C)--(A); \draw[line width=1pt] (C) +(.25,0) |- +(0,.25); \end{tikzpicture} } %\includegraphics[width=0.2\textwidth]{92ea7b61-8fc8-4d55-9af3-966e60398ba3} \end{center} In \(\triangle A B C\) given that \(|\underset{\sim}c|^2=|\underset{\sim}a|^2+|\underset{\sim}b|^2\), prove that \(\angle A C B=\dfrac{\pi}{2}\)\\ \textbf{Solution}\\ $\begin{aligned} {\underset{\sim}c}&=\underset{\sim}b+\underset{\sim}a \\ |\underset{\sim}c|^2&=c \cdot c=(b+a)(b+a) \\ &= b \cdot b+2 a \cdot b+a \cdot a \\ |c|^2&=|b|^2+|a|^2+2 a \cdot b \\ |a|^2+|b|^2&=|b|^2+|a|^2+2 a \cdot b \\ \therefore 2 a \cdot b&=0 \\ \therefore a \cdot b&=0 \\ \therefore \angle A C B&=\frac{\pi}{2} \end{aligned}$\\](/media/awnpe4lo/vectors-in-geometry.png)
5
With Worked Solution2
Videos relating to Vectors in Geometry.
With all subscriptions, you will receive the below benefits and unlock all answers and fully worked solutions.
Purchase the course book. This book either comes as a physical book or it can be purchased as an e-book.
You may choose to purchase the individual topic book from the main coursebook. These only come as e-books.