Resources for Vector Basics
-
Questions
5
With Worked SolutionClick Here -
Video Tutorials
2
Click Here
Vector Basics Theory
![- The magnitude of a vector \(\overrightarrow{A B}\) is \(|\overrightarrow{A B}|\).\\ - Two vectors are equal if and only if they have the same magnitude and direction\\ - The negative of vector \(\overrightarrow{A B}=a\) is the vector \(-\overrightarrow{A B}=\overrightarrow{B A}=-a\)\\ - Multiplying a vector by a scalar \(k\) results in a vector \(k\) times the magnitude and in the same direction of the original vector\\ \begin{center} \resizebox{0.35\textwidth}{!}{ \begin{tikzpicture} \coordinate [label=left:$A$ ] (A) at (-2,0); \coordinate [ label=right:$C$ ] (B) at (2,0); \coordinate [ label=above:$B$ ] (C) at (0,2); \draw[line width=1pt] (A)--(B)--(C)--cycle; \draw[decoration={markings, mark=at position 0.5 with {\arrow[scale=1.3]>}}, postaction=decorate,line width=1pt](A)--(B); \draw[decoration={markings, mark=at position 0.5 with {\arrow[scale=1.3]<}}, postaction=decorate,line width=1pt](B)--(C); \draw[decoration={markings, mark=at position 0.5 with {\arrow[scale=1.3]<}}, postaction=decorate,line width=1pt](C)--(A); \end{tikzpicture} } \end{center} - The triangle rule.\\ $\begin{aligned} \text { In } \triangle A B C \text { let } a&=\overrightarrow{A B}, b=\overrightarrow{B C} \text { and } c=\overrightarrow{A C} \\ \therefore \overrightarrow{A B}+\overrightarrow{B C}&=\overrightarrow{A C} \\ a+b&=c \end{aligned}$\\](/media/j2aa4qhl/3949.png)
![\textbf{Example}\\ \begin{center} \resizebox{0.4\textwidth}{!}{ \begin{tikzpicture} \coordinate [label=left:$A$ ] (A) at (-2,0); \coordinate [ label=right:$B$ ] (B) at (2,0); \coordinate [ label=above:$C$ ] (C) at (0,2); \draw[fill=black] (-1,1) circle (0.06) node[left=1mm]{$P$}; \draw[fill=black] (0,0) circle (0.06) node[below=1mm]{$R$}; \draw[fill=black] (1.49,0.5) circle (0.06) node[right=1mm,yshift=1mm]{$Q$}; \draw[line width=1pt] (A)--(B)--(C)--cycle; \draw[decoration={markings, mark=at position 0.7 with {\arrow[scale=1.3]>}}, postaction=decorate,line width=1pt](A)--(B); \draw[decoration={markings, mark=at position 0.1 with {\arrow[scale=1.3]<}}, postaction=decorate,line width=1pt](B)--(C); \draw[decoration={markings, mark=at position 0.3 with {\arrow[scale=1.3]<}}, postaction=decorate,line width=1pt](C)--(A); \end{tikzpicture} } \end{center} \(\triangle A B C\) is a triangle with \(\overrightarrow{A C}=a\) and \(\overrightarrow{A B}=b\).\\ \(P\) and \(R\) are midpoints of \(\overrightarrow{A C}\) and \(\overrightarrow{A B}\) respectively.\\ \(Q\) is a point on \(\overrightarrow{C B}\) such that \(\overrightarrow{C Q}=3 \times \overrightarrow{Q B}\). \begin{itemize} \item[\bf{i)}]Express \(\overrightarrow{C B}\) and \(\overrightarrow{P R}\) in terms of \(a\) and \(b\). \item[\bf{ii)}]Compare vectors of \(\overrightarrow{C B}\) and \(\overrightarrow{P R}\) \item[\bf{iii)}] Express vectors \(\overrightarrow{Q B}\) and \(\overrightarrow{CQ} \) in terms of \(a\) and \(b\) \item[\bf{iv)}]show that \(\overrightarrow{A Q}=\dfrac{1}{4}(3 b+a)\) \end{itemize} \columnbreak \textbf{Solution}\\ $\begin{aligned} \text { (i) } \quad \overrightarrow{A C}+\overrightarrow{C B} & =\overrightarrow{A B} \\ \overrightarrow{C B} & =\overrightarrow{A B}-\overrightarrow{A C} \\ & =b-a \end{aligned}$\\ $\begin{aligned} \overrightarrow{A P}+\overrightarrow{P R} & =\overrightarrow{A R} \\ \overrightarrow{P R} & =\overrightarrow{A R}-\overrightarrow{A P} \\ & =\frac{1}{2} b-\frac{1}{2} a \\ & =\frac{1}{2}(b-a) \end{aligned}$\\ \(\text { (ii) } \quad \therefore \overrightarrow{P R}=\frac{1}{2} \overrightarrow{C B}\)\\ $ \begin{aligned} \text{(iii) } \quad\overrightarrow{Q B} & =\frac{1}{4} \overrightarrow{C B} \\ & =\frac{1}{4}(b-a) \end{aligned}$\\ $\begin{aligned} \overrightarrow{C Q} & =\frac{3}{4} \overrightarrow{C B} \\ & =\frac{3}{4}(b-a) \end{aligned}$\\ $\begin{aligned} \text{(iv) } \quad \overrightarrow{A Q}+\overrightarrow{Q B} & =\overrightarrow{A B} \\ \overrightarrow{A Q} & =\overrightarrow{A B}-\overrightarrow{Q B} \\ & =b-\left(\frac{1}{4} b-\frac{1}{4} a\right) \\ & =\frac{1}{4}(3 b+a) \end{aligned}$\\](/media/4apln55r/3949-1.png)
5
With Worked Solution2
Videos relating to Vector Basics.
With all subscriptions, you will receive the below benefits and unlock all answers and fully worked solutions.
Purchase the course book. This book either comes as a physical book or it can be purchased as an e-book.
You may choose to purchase the individual topic book from the main coursebook. These only come as e-books.