Resources for Scalar Product of Vectors
-
Questions
5
With Worked SolutionClick Here -
Video Tutorials
2
Click Here
Scalar Product of Vectors Theory
![Given \(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{a}=x_1 i+y_1 j\) and \(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{b}=x_2 i+y_2 j\) then \(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{a} \cdot \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{b}=x_1 x_2+y_1 y_2\) and \(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{a} \cdot \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{b}=|a||b| \cos \theta\). If \(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{a}\) is perpendicular to \(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{b}\) then \(\theta=\dfrac{\pi}{2}\).\\ \(a \cdot b=|a||b| \cos \dfrac{\pi}{2}\).\\ \(\therefore a \cdot b=0\)\\ \begin{multicols}{2} \textbf{Example 1}\\ %question 12287 The scalar product \(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{a} \cdot \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{b} \) of \(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{a} = 3\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{i} + 2\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{j} \) and \(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{b} = - 2\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{i} + 5\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{j} \) is?\\ \textbf{Example 1 solution}\\ $\begin{aligned}[t] a \cdot b &=(3 i+2 j)(-2 i+5 j) \\ &=3 \times -2+2 \times 5 \\ &=4 \end{aligned}$\\ \columnbreak \textbf{Example 2}\\ The angle between \(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{a} = 2\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{i} + 3\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{j} \) and \(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{b} = \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{i} - \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{j} \) is closest to?\\ \textbf{Example 2 solution}\\ $\begin{aligned}[t] &\begin{aligned} \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{a} \cdot \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{b} &=(2i+3j)(i-j) \\ &=2-3 \\ &=-1\\ |\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{a}| &=\sqrt{4+9} \\ &=\sqrt{13}\\ |\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{b}| &=\sqrt{1+1} \\ &=\sqrt{2}\\ \end{aligned}\\ &\begin{aligned} \cos \theta&=\frac{a \cdot b}{|a|\times|b|}\\ &=\frac{-1}{\sqrt{26}}\\ \theta&=101^{\circ} \end{aligned} \end{aligned}$\\ \end{multicols}](/media/ytqahrkn/scalar-product-of-vectors.png)
5
With Worked Solution2
Videos relating to Scalar Product of Vectors.
With all subscriptions, you will receive the below benefits and unlock all answers and fully worked solutions.
Purchase the course book. This book either comes as a physical book or it can be purchased as an e-book.
You may choose to purchase the individual topic book from the main coursebook. These only come as e-books.