Resources for Time Equations
-
Video Tutorials
5
Click Here
Time Equations Theory
![A projectiles' trajectory can be defined as \\ \(\displaystyle v(t)=V t \cos \theta \,i+\left(V t \sin \theta-\frac{1}{2} g t^2\right)\, j\) in component form. \\[6pt] OR\\[6pt] \(v(t)=\left(\begin{array}{l} v t \cos \theta \\ v t \sin \theta-\dfrac{1}{2} g t^2 \end{array}\right) \text { in column vector form } \)\\ i.e. \(x=V t \cos \theta\) and \(y=V t \sin \theta-\dfrac{1}{2} g t^2\)\\[6pt] The velocity of the projectile can be defined as \(v(t)=v \cos \theta i+(v \sin \theta-g t) j\) in component form\\[6pt] OR\\[6pt] \(v(t)=\left(\begin{array}{l}v \cos \theta \\ v \sin \theta-g t\end{array}\right)\) in column vector form i.e \(\dot{x}=V \cos \theta\) and \(\dot{y}=V \sin \theta-g t\)\\[18pt] \textbf{Example}\\ A projectile is fired with initial velocity \(V\text{ms}^{-1}\) at an angle of projection \(\theta\) from a point \(O\) on horizontal ground. After 2 seconds it just passes over a 4 metre high wall that is 24 metres from the point of projection. Assume acceleration due to gravity is \(10\text{ms}^{-2}\). Assume the equations of displacement are $$x = Vt\cos\theta\text{ and } y = Vt\sin\theta - 5t^2$$ \begin{center} \resizebox{0.4\textwidth}{!}{ \begin{tikzpicture}[scale=0.85] \def\angle{45} % starting angle \def\range{12} % horizontal range \def\height{0} % height \draw[-latex,line width=2pt] (0,0) -- (\range,0) node(X)[right] {\Large$x$}; \draw[-latex,line width=2pt] (0,0) -- (0,\height+8) node(Y)[above] {\Large$y$}; \def\v0{12*sqrt(2)} % initial velocity \def\g{9.8} % acceleration due to gravity \def\tflight{2*\v0*sin(\angle)/\g} % time of flight \def\xmax{\v0*\tflight*cos(\angle)} % horizontal range \draw[line width=3pt,dashed, samples=200, smooth,domain=0:%\xmax 11] plot ({\x},{\height+\v0*sin(\angle)*(\x/\v0/cos(\angle))-0.5*\g*(\x/\v0/cos(\angle))^2}) node(G) {}; \draw[line width=3pt] (\range-1,0)--(\range-1,12*1.2-5*1.2*1.2-1.6) node[midway,left=2pt] {\Large \textbf{4m}}; \path (0,0)--(\range-1,0) node[below=4pt,midway] {\Large \textbf{24m}}; \draw[fill=black] (\range-1,12*1.2-5*1.2*1.2-1.6) circle (0.2); \coordinate[label=above left:\Large$O$] (O) at (0,0); \coordinate (A) at (1,1); %\pic [draw=black,line width=1pt,angle radius=0.9cm,angle eccentricity=1.5,"\Large$\alpha$"] {angle=X--O--A}; \end{tikzpicture} } \end{center} \begin{itemize} \item[\bf{i)}]Find \(V\) and \(\theta\). \item[\bf{ii)}]Find the time taken for the projectile to attain its maximum height. \item[\bf{iii)}]Find the range of the projectile. \end{itemize} \begin{multicols}{2} \textbf{Solution}\\ i)\\ When \(t=2\), \(x=24\),\\ $\begin{aligned}24 &= 2V\cos\theta \\V\cos\theta &= 12 \qquad (1)\end{aligned}$ \\ When \(t=2, y=4\)\\ $\begin{aligned}4 &= 2V\sin\theta -20\\V\sin\theta &= 12 \qquad (2)\end{aligned}$ \\ \((2) \div (1)\)\\ $\begin{aligned}\frac{V\sin\theta}{V\cos\theta} &= \tan\theta = 1\\\therefore \theta &= \frac{\pi}{4}\end{aligned}$ \\ $\begin{aligned}x &= Vt\cos\theta\\24 &= V\times\frac{1}{\sqrt{2}}\times 2\\\therefore V &= 12\sqrt{2}\text{ms}^{-1}\end{aligned}$ \\ ii)\\ $\begin{aligned}y &= Vt\sin\theta - 5t^2\\\dot{y} &= V\sin\theta -10t\end{aligned}$ \\ Let \(\dot{y}\) equal \(0\) to determine the time for the particle to attain maximum height,\\ $\begin{aligned}0 &= 12\sqrt{2}\times\frac{1}{\sqrt{2}} - 10t\\10t &= 12\\\therefore t &= 1.2 \text{ seconds}\end{aligned}$ \\ iii)\\ If the time to reach the maximum height is 1.2 seconds, then by symmetry the time taken for the particle to strike the ground is 2.4 seconds.\\ $\begin{aligned}x &= Vt\cos\theta\\&= 12\sqrt{2}\times\frac{1}{\sqrt{2}}\times 2.4= 28.8\text{m}\end{aligned}$ \\ \end{multicols}](/media/2gkjjvpt/4853.png)
5
Videos relating to Time Equations.
With all subscriptions, you will receive the below benefits and unlock all answers and fully worked solutions.
Purchase the course book. This book either comes as a physical book or it can be purchased as an e-book.
You may choose to purchase the individual topic book from the main coursebook. These only come as e-books.