Resources for Direction Fields
-
Questions
4
With Worked SolutionClick Here -
Video Tutorials
1
Click Here
Direction Fields Theory
![\begin{center} \resizebox{0.3\textwidth}{!}{ \begin{tikzpicture} \def\dx{0.5}; % x-spacing for ticks \def\dy{0.5}; % y-spacing for ticks \def\sx{-5}; % lower bound for x values \def\sy{-5}; % lower bound for y values \def\ex{5}; % upper bound for x values \def\ey{5}; % upper bound for y values \def\l{0.2}; % length of HALF of a segment % draw grid \draw[gray, thin] (-5,-5) grid (5,5); \draw[ultra thick,latex-latex,red] (-5.5,0) -- (5.5,0); \draw[ultra thick,latex-latex,red] (0,-5.5) -- (0,5.5); % draw slope ticks: \foreach \x in {-5,-4.5,...,5} { \foreach \y in {-5,-4.5,...,-0.5,0.5,1,...,5} { \pgfmathsetmacro{\m}{\x/\y}; \pgfmathsetmacro{\k}{\l/sqrt(1+\m*\m)}; \pgfmathsetmacro{\h}{\k*\m}; \draw[ thick,darkgray!90] (\x,\y) -- (\x+\k,\y+\h); \draw[ thick,darkgray!90] (\x,\y) -- (\x-\k,\y-\h); } } \foreach \i in {-5,...,-1,1,2,...,5} { \draw[thick] (\i,0)--(\i,-0.1); \node[below] at (\i,-0.1) {\large \i}; \draw[thick] (0,\i)--(-0.1,\i); \node[left] at (-0.1,\i) {\large \i}; } \end{tikzpicture} } \end{center} The direction field represents the first order differential equation \(y^{\prime}=\dfrac{x}{y}\). Consider the point \((2,2)\). \\ \(y^{\prime}=\dfrac{2}{2}=1\). On the direction field, the gradient \(\approx\) 1 \\ Consider the point \((-2,2)\)\\ \(y^{\prime}=\dfrac{-2}{2}=-1\). On the direction field the gradient \(\approx-1\).\\ $\begin{aligned} & \frac{d y}{d x}=\frac{x}{y} \\ & \displaystyle \int y \,d y=\displaystyle \int x \,d x \\ & \frac{y^2}{2}=\frac{x^2}{2}+c \\ & \therefore y^2=x^2+k \quad (k=2 c) \\ & \text{At }(2,2), \quad 4=4+k \quad \rightarrow k=0\\ & \therefore y=\pm x \text { is a particular solution } \\ & y^2-x^2=k \text { is a general solution } \\ & y^2-x^2=k \text { are a family of hyperbolas. } \end{aligned}$\\ \begin{multicols}{2} \textbf{Example}\\ %question 123253 Given the differential equation \(y^{\prime}=y \cos x\) and that the solution curve passes through the point \(\left(\dfrac{\pi}{3}, 1\right)\), then the gradient of the solution curve at this point is? \\ \columnbreak \textbf{Solution}\\ $\begin{aligned} \text { At }\left(\dfrac{\pi}{3}, 1\right) \qquad y^{\prime}&=1 \times \cos \frac{\pi}{3} \\ y^{\prime}&=\frac{1}{2} \end{aligned}$ \\ \end{multicols}](/media/l3mpbgat/direction-fields.png)
4
With Worked Solution1
Videos relating to Direction Fields.
With all subscriptions, you will receive the below benefits and unlock all answers and fully worked solutions.
Purchase the course book. This book either comes as a physical book or it can be purchased as an e-book.
You may choose to purchase the individual topic book from the main coursebook. These only come as e-books.