Resources for Trig Integration
-
Video Tutorials
3
Click Here
Trig Integration Theory
![\textbf{Trigonometric Functions}\\ When integrating trigonometry functions it is important to recall identities such as:\\ $\begin{aligned} & \cos 2 \theta=2 \cos ^2 \theta-1 \\ & \cos 2 \theta=1-2 \sin ^2 \theta \\ & \sin \theta \cos \varphi=\dfrac{1}{2}(\sin (\theta+\varphi)+\sin (\theta-\varphi)) \\ & \cos \theta \cos \varphi=\dfrac{1}{2}(\cos (\theta+\varphi)+\cos (\theta-\varphi)) \\ & \cos \theta \sin \varphi=\dfrac{1}{2}(\sin (\theta+\varphi)-\sin (\theta-\varphi)) \\ & \sin \theta \sin \varphi=\dfrac{1}{2}(\cos (\theta-\varphi)-\cos (\theta+\varphi)) \end{aligned}$\\ \begin{multicols}{2} \textbf{Example 1}\\ %Question 12023 Evaluate \(\displaystyle \int\limits_0^{\frac{\pi }{6}} {{{\cos }^2}\theta \,d\theta } \) \\ \textbf{Example 1 solution}\\ $\begin{aligned} \displaystyle \int_{0}^{\frac{\pi}{6}} \cos ^{2} \theta \, d \theta &=\displaystyle \int_{0}^{\frac{\pi}{6}} \frac{1}{2}(\cos 2\theta+1) \, d \theta \\ &=\frac{1}{2}\left[\frac{1}{2} \sin 2 \theta+\theta\right]_{0}^{\frac{\pi}{6}} \\ &=\frac{1}{2}\left[\frac{1}{2} \sin \frac{\pi}{3}+\frac{\pi}{6}-0 \right]\\ &=\frac{1}{4} \times \frac{\sqrt{3}}{2}+\frac{\pi}{12} \\ &=\frac{\sqrt{3}}{8}+\frac{\pi}{12} \end{aligned}$\\ \columnbreak \textbf{Example 2}\\ %Question 12024 Evaluate \(\displaystyle \int\limits_0^{\frac{\pi }{3}} {\cos 3x\,\sin x\,dx} \)\\ \textbf{Example 2 solution}\\ $\begin{aligned} &\displaystyle \int_{0}^{\frac{\pi}{3}} \cos 3 x \sin x \,dx=\frac{1}{2} \displaystyle \int_{0}^{\frac{\pi}{3}} \sin (3 x+x)-\sin (3 x-x) \,dx\\ \end{aligned}$\\ $\begin{aligned} I&=\frac{1}{2} \displaystyle \int_{0}^{\frac{\pi}{3}} \sin 4 x-\sin 2 x \,dx \\ &=\frac{1}{2}\left[-\frac{1}{4} \cos 4 x+\frac{1}{2} \cos 2 x\right]_{0}^{\frac{\pi}{3}} \\ &=\frac{1}{2}\left[-\frac{1}{4} \cos \frac{4 \pi}{3}+\frac{1}{2} \cos \frac{2 \pi}{3}-\left(-\frac{1}{4} \cos 0+\frac{1}{2} \cos 0\right)\right] \\ &=\frac{1}{2}\left[-\frac{1}{4} \times-\frac{1}{2}+\frac{1}{2} \times-\frac{1}{2}+\frac{1}{4}-\frac{1}{2}\right] \\ &=\frac{1}{2}\left[\frac{1}{8}-\frac{1}{4}+\frac{1}{4}-\frac{1}{2}\right] \\ &=-\frac{3}{16} \end{aligned}$\\](/media/2pnb1z3q/trig-integration.png)
3
Videos relating to Trig Integration.
With all subscriptions, you will receive the below benefits and unlock all answers and fully worked solutions.
Purchase the course book. This book either comes as a physical book or it can be purchased as an e-book.
You may choose to purchase the individual topic book from the main coursebook. These only come as e-books.