Resources for Integrations that give Inverse Trig Functions
-
Video Tutorials
3
Click Here
Integrations that give Inverse Trig Functions Theory
![The following rules may he applied \\ $\begin{aligned} & \displaystyle \int \dfrac{1}{\sqrt{1-x^2}} d x=\sin ^{-1} x+c \\ & \displaystyle \int \dfrac{1}{\sqrt{a^2-x^2}} d x=\sin ^{-1} \dfrac{x}{a}+c \\ & \displaystyle \int \dfrac{-1}{\sqrt{1-x^2}} d x=\cos ^{-1} x+c \\ & \displaystyle \int \dfrac{-1}{\sqrt{a^2-x^2}} d x=\cos ^{-1} \dfrac{x}{a}+c \\ & \displaystyle \int \dfrac{1}{1+x^2} d x=\tan ^{-1} x+c \\ & \displaystyle \int \dfrac{1}{a^2+x^2} d x=\dfrac{1}{a} \tan ^{-1} \dfrac{x}{a}+c . \end{aligned}$\\ \begin{multicols}{2} \textbf{Example 1}\\ %question 123221 Evaluate \(\displaystyle \int_{-1}^1 \dfrac{1}{\sqrt{2-x^2}}\, d x\) \\ \textbf{Example 1 solution}\\ $\begin{aligned} \displaystyle \int_{-1}^1 \frac{1}{\sqrt{2-x^2}} d x &=\int_{-1}^1 \frac{1}{\sqrt{(\sqrt{2})^2-x^2}} d x \\ &=\left[\sin ^{-1} \frac{x}{\sqrt{2}}\right]_{-1}^1 \\ &=\left[\sin ^{-1} \frac{1}{\sqrt{2}}-\sin ^{-1} \frac{-1}{\sqrt{2}}\right] \\ &=\left[\sin ^{-1} \frac{1}{\sqrt{2}}+\sin ^{-1} \frac{1}{\sqrt{2}}\right] \\ &=2 \sin ^{-1} \frac{1}{\sqrt{2}} \\ &=2 \times \frac{\pi}{4} \\ &=\frac{\pi}{2} \end{aligned}$\\ \columnbreak \textbf{Example 2}\\ %question 123223 Evaluate \(\displaystyle \int_0^{\frac{1}{3}} \dfrac{1}{1+9 x^2}\, d x\)\\ \textbf{Example 2 solution}\\ $\begin{aligned} \displaystyle \int_0^{\frac{1}{3}} \frac{1}{1+9 x^2} d x &=\int_0^{\frac{1}{3}} \frac{1}{9\left(\frac{1}{9}+x^2\right)} d x \\ &=\frac{1}{9} \int_0^{\frac{1}{3}} \frac{1}{\left(\frac{1}{3}\right)^2+x^2} d x \\ &=\frac{1}{9}\left[3 \tan ^{-1} 3 x\right]_0^{\frac{1}{3}} \\ &=\frac{1}{3}\left[\tan ^{-1}(1)-\tan ^{-1}(0)\right] \\ &=\frac{1}{3} \times \frac{\pi}{4} \\ &=\frac{\pi}{12} \end{aligned}$\\ \end{multicols}](/media/azuffa4b/integrations-that-give-inverse-trig-functions.png)
3
Videos relating to Integrations that give Inverse Trig Functions.
With all subscriptions, you will receive the below benefits and unlock all answers and fully worked solutions.
Purchase the course book. This book either comes as a physical book or it can be purchased as an e-book.
You may choose to purchase the individual topic book from the main coursebook. These only come as e-books.