Resources for Integration by Substitution
-
Video Tutorials
5
Click Here
Integration by Substitution Theory
![To integrate \(I=\displaystyle \int_1^3 x(x-1)^4 d x\) it would he tedious to expand and then integrate. \\ Instead, if we let \(u=x-1\) and also differentiate \(u=x-1\) to get \(\dfrac{d u}{d x}=1\)\\ Then I becomes \(\displaystyle \int_{x=1}^{x=3}(u+1) u^4 d u \quad(\) since \(d u=d x)\).\\ The limits also must be changed\\ $\begin{aligned} \therefore I & =\displaystyle \int_0^2 u^5+u^4 d u \\ & =\left[\frac{1}{6} u^6+\frac{1}{5} u^5\right]_0^2 \\ & =\frac{1}{6} \times 2^6+\frac{1}{5} \times 2^5 \\ & =\frac{256}{15} . \end{aligned}$\\ \textbf{Example 1} %(21412} Using the substitution \(u = {x^2} + 2\), evaluate \(\displaystyle \int\limits_0^{\sqrt 2 } {x\sqrt {{x^2} + 2} \,\,dx} \)\\ \begin{multicols}{2} \textbf{Example 1 solution}\\ \(I=\int^{\sqrt{2}}_{0}x\sqrt{x^2+2}dx\)\\ $\begin{aligned} x&=\sqrt{2}\rightarrow u=4\\ x&= 0 \rightarrow u=2 \end{aligned}$\\ $\begin{aligned} u&=x^2+2\\ \frac{du}{dx}&=2x\\ \frac{1}{2}du&=xdx \end{aligned}$\\ \columnbreak \textbf{Example cont}\\ $\begin{aligned} I&=\frac{1}{2}\displaystyle \int^{4}_{2}\sqrt{u}\,du\\ &=\frac{1}{2}\displaystyle \int^{4}_{2}u^{\frac{1}{2}}\,du\\ &=\frac{1}{2}\left[\frac{2}{3}u^{\frac{3}{2}}\right]^{4}_{2}\\ &=\frac{1}{3}[4^{\frac{3}{2}}-2^{\frac{3}{2}}]\\ &=\frac{1}{3}[8-2\sqrt{2}]\\ &=\frac{2}{3}[4-\sqrt{2}] \end{aligned}$\\ \end{multicols}](/media/43kdeoqs/integration-by-substitution.png)
5
Videos relating to Integration by Substitution.
With all subscriptions, you will receive the below benefits and unlock all answers and fully worked solutions.
Purchase the course book. This book either comes as a physical book or it can be purchased as an e-book.
You may choose to purchase the individual topic book from the main coursebook. These only come as e-books.